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Abstract. The subject of this paper is a neural network with binary neurons, randomly diluted
synapses and variable pattern activity. We look at the system with parallel updating using a
probabilistic approach to solve the one-step dynamics with one condensed pattern. We derive
restrictions on the storage capacity and the mutual information content occuring during the retrieval
process. Special focus is placed on the constraints on the threshold for optimal performance. We
also look at the effect of noisy updating, giving a dynamical version of the critical temperature, the
corresponding threshold and an approximation for the time evolution for small temperatures. The
description is applicable to the whole retrieval process in the limit of strong dilution. The analysis

is carried out as exactly as possible and over the whole parameter ranges, generalizing some former
results.

1. Introduction

Simple cognitive functions of the brain, like associative recall of memories, have been studied
over the last 15 years by using models of attractor networks. One of these is the Hopfield—Little
model [3], which was analysed by means of statistical mechanics [4] because of the similarity
to spin models. To get a more realistical description of properties in data processing, it was
extended to models with variable pattern activity [5]. In this context a network with neurons
S; € {0, 1}, instead of{—1, 1} was studied in [6, 7] and showed enhanced storage capacity,
resembling the upper bound obtained by Gardner [8]. To account for the low connectivity in the
brain, this model was extended to random dilution of synapses and analysed with a dynamical
approach [9]. The one-step parallel dynamics of a network can be solved exactly, using a
probabilistic description [10] with a restriction to the first time step or very high dilution [11],
due to feed-back loops. More recently this method was used to characterize the influence of
the threshold on the retrieval properties [12, 13].

Following this work, we characterize the state of the network by two overlaps with one
condensed pattern. We use the probabilistic description of the time evolution of these overlaps
to derive conditions for theirimprovement on the storage capacity. We also consider the mutual
information content [12] and the restriction on the threshold in(fhex)-plane for optimal
performance. The effect of positive temperature is studied, leading to an exact expression for
the critical value with the corresponding threshold, and an approximation for the time evolution
for small temperatures. The analysis is performed as exactly as possible, covering the whole
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range of the pattern activity and the overlaps from a dynamical point of view. In this way we
can rederive some former results by looking at special limits, like small pattern activity and the
network near retrieval. The main purpose is to demonstrate the possibilities of this relatively
simple approach and we therefore study a simple network with realistic features. The most
important considerations are confirmed by simulations.

In the sections 1.1 and 1.2 we introduce the model and the theoretical description. In
section 2 we study restrictions on the pattern loading and the threshold for good retrieval
properties at zero temperature. The effect of noisy updating is analysed in section 3 and in
section 4 we summarize our results.

1.1. The model

The network consists oV neuronsS; € {0,1},i = 1,..., N and the state is described
by S = (S1,...,Sy). There arep patternsg”, v = 1,..., p, with elementst” e {0, 1},
i=1...,N. They are stored by using a modified Hebb rule (see [5-7])
_ (=8 DE —a 1

= Nea@—a) ;@l )(E] —a) 1)
The&! are independent, identically distributed random variables (IIDRV) with the distribution
function P(§”) = ad(§) — D+ (1 — a)é(&), a € [0, 1]. Therefore, the activity of every
pattern

1 N
«i= @=L 8 0
i=1

is a random variable with meanand variance]%a(l — a) for all patternsv € {1,..., p}.
Thec;; € {0, 1} are also IIDRV with the distributio? (¢c;;) = ¢(cij — 1) + (1 — ¢)8(cyj),
¢ € [0, 1]. Hence the number of connections per neurower the number of neurons:

, 1Y
Ct/N = <Cij)j = N ZCU € [0, 1]
j=1

is again a random variable with meaand variancg};c(l— c) forallneurons € {1,..., N}.

The normalization factofca(1 — a))~* in the definition of the synapses turns out to be
useful for keeping the local field in the same order of magnitude over the whole range of pattern
activity and network connectivity. As usual we hage= 0 foralli € {1, ..., N}, enforced
by the factor(1 — §;;).

The neurons are updated parallel in discrete time step® and a uniform threshol@,
which may be time dependent, is subtracted from the local field

N
hi(e) =) Ji;S;(t).
j=1
We have the usual activation functigrix, 8) = (1 + e 2#¥)~, with the noise parameter
B = T~! and temperatur&, giving the update rule
P(Sit+1) =1 =ghi() — Q,p) @)
PSi(t+1) =0)=1-ghi() — 0O, p).
For the noiseless case the activation function reduces to the Heavyside step figrietign,—
®(x) for B — oo, and the update rule is

1 if m@t)— Q>0
Sit+h =1, it h@)—0<0. )
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1.2. Theoretical description

We describe the network theoretically in the thermodynamic IMip — oo, a = p/(cN) =
const, denoted with Lim, yielding the following simplifications:

Lima" =a v=1...,p LimC'/N = ¢ i=1...,N.

We only consider the case of one condensed pattesr{1, - - -, p} and characterize the state
of the network by two corresponding overlaps (omitting the indix

my (1) = %Lim(&“Si(t))i €[0,1]
1
m (1) = lem((l— E9(1 = Si(1))); €0, 1].

With the two observables one can easily obtain the current network activijy
A(t) == Lim(S;(t)); = amy(t) + (L —a)(L—m (1)) € [0, 1].

The average overlaps with a noncondensed pattefnu arem," (1) = A(r) andm "’ (1) =
1— A(r). As patternu is condensedy, resp. m, have to be substantially bigger than
these values and the casg = A, m, = 1 — A, which is equivalent withn, + m| = 1,
corresponds to the failure of retrieval. If the system is in a state mijtir) +m | (r) = 1 we
havem,(t + 1) + m (¢t + 1) = 1, which can easily be seen from the evolution equation (6)
derived later. Hence, if the network is in a state uncorrelated with the retrieval pattern it will
stay in such a state.

We often consider the network in a state whaie) = a. Givenm; this is achieved by
setting

a
C(1-a

To model the time evolution of the network we calculate the mean and the variance of the local
field h; (r) for & = 0 and&* = 1, by splitting it in signal park? and noise part as usual:

myt)=m,, (@) =1 A —m4()).

¢ij(1—34;)

h; = Lim
<Nca(l —a)

& —a)E] - a)S,»> - h}
7
i@ =8 S N
+Lim << Nca(l - a) (El a)(gj a)S.]>>j,v;£;L ~ hi .

The indication of the time dependence is omitted. We now average over the random
distributions of the patterng” and the state of the netwok in the thermodynamic limit,
fixing the value o/*. Due to self-averaging the signal part has a concrete valuegsp. .,

but the noise part is a Gaussian random variable with mean zero and varfance

pr =Lim{hilg" = Lhe jzis = (L= a)my +my —1)
. 2
o? = Lim{hY Ne ysps = aA.

The two random variables ler—01— O have meam — Q resp.u; — Q, standard deviation
o and the distribution functions
1 —(x =y + Q)2>
x) = ex
1 (x) T p( 552

py(x)resp. i =1,...,N. (5)
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With the dynamical equations (2), (3) we can computeandm, for the next time step by
averaging the activation function over the distribution of the- Q.
g(x, B)py(x) dx
% oo (6)
(1—g(x, B))p,(x)dx.

my(t +1) = (g(hi(t) = Q, P)), =/

myt+ D = (L—g(hi(t) — Q. B)),, =/

For the noiseless case this simplifies to

my(t+1) = /000 pr(x)dx = % (1+erf('uj/£GQ))

(1)
m(t+1) = % <1+erf<%>>.

In the calculations above we considered the neurons to be IIDRVs with activityhis
can be realized in the first time step but after one iteration the neurons may be correlated due
to feedback loops. In the limit of strong dilution, so that the neurons do not have common
ancestors in former time steps, the description is valid for the whole retrieval process. To
achieve this the number of connections at each nedrohas to be of order IV, which
includesc ~ N~'InN — 0 for N — oco. For further details see [10, 11] and references
therein.

There are 1(aN) corrections tar andu, which become relevant in finite systems with
smalla. Therefore we will only present simulations for relativly high which is not a
limitation of the theory.

2. Dynamical properties at zero temperature

Inthe following we look at the one-step dynamics and get conditions on the pattern loading and
the threshold for improvement of, andm  at7 = 0. We setAm, = m,(t+1) —m4 (1) > 0
andAm; > 0 in equation (7) and get (inverf) is the inverse errorfunction € (x)):

my —Q

>cp = «/iinverf(ZmT -1
o ®)
u >cy = «/Einverf(Zml —-1).

2.1. Critical storage capacity and mutual information

By adding the two equations (8) we get the conditign— 1, > o (cy +¢,) forimprovement,
which has to be satisfied independent of the choio@ aissuming that it is chosen optimally.
With the expressions fqt4, 1, ando from equation (4) we can solve for the critical valye
where both improvements are zero:

(mT« +m¢ —1)2
= e re A
1

_ZJTmT

for my+m, #1

g ci/2 for my+m; =1. (9)

From the inequality we get the following conditions for improvemenugfandm

o< o it mpy+my >1
) (10)
o> o it my+my <1
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This is the case because we hayet ¢, < 0 formy +m;, < 1 and in this region we can

have improvement for arbitrary high pattern loadings. Soii too high the network always

develops towards a state uncorrelated with the retrieval pattern, where we:have | = 1.

In contrast to the usual storage capacity in equilibriggris a dynamical variable, depending
onm, andm, as well as o andc.

e Dependence on the network connectivity
Aswe definedr = p/(cN) we see that the maximal number of storable patterns decreases
proportional to the number of connections per neuron, becaugeindependent on.
This is in accordance with former studies of random dilution in equilibrium (e.qg. [9]).

e Dependence on the pattern activity
For decreasing the capacity increases monotonicallysif +m; > 1 and decreases if
my +my < 1. If my andm are fixed we get the finite value|,—o = %
When the activity of the network is equal to the one of the stored patterns we have
A =a,m, =m,, and therefore|,,, = +/2inverf[1— 2 (1—m,)]. By using the
approximation inverfx) ~ (—In (1 — x))¥? for small x (see [14]), we get the leading
behaviour oty for the limita — 0:

N (mT+m¢A—1)2 N m¢2c

with my < 1—2a. (1D

. A
(¢ilm, )%a —2alna

This is known from former studies [5-7,9] as an approximation to the equilibrium storage
capacity for smalk and resembles the upper bound by Gardner [8].

e Dependence on the state of the network
If one of the two parameters;, andm, is equal to 1 or Og, is zero, because for
my, m, — 1 we havecy, ¢, — oo. This means we can only have perfect retrieval for a
finite number of patterns.

For very small pattern activities the storage capacity may increase but the number of active
neurons and the information represented by a single pattern decreases. Therefore, the maximal
amount of information storable in the network gives a more sensible characterization of
performance. To account for the loss of information due to retrieval errors; j.en, # 1,

one uses the mutual information [12]. It can be defined as the negative logarithm of the
conditional probability of choosing a network state with andm , given the activityA:

s =m0 () Ca-tmo@aw ) / (4w )
N N myaN 1-my)A—-a)N AN
=a(msInmy + (A —my) IN(L—my)) — (1 —A)In(L - A)
—AINA+(Q—a)im Inm, + (A —m)In(L—m,)).
This is the average amount of information per neuron of the retrieval pattern, that can be

obtained from the network in a given statg, m . For the maximal mutual information
contenti,, per synapse in units of bits we get:

. . Pmax o my 1_mT
. =Lim1, = In—+ @ —my)In
' cN2In2 _ cIn2 {“ ["” 2 FdmmyingT }

1-4
This gives the maximal amount of information per synapse storable in the network, subject to
the constraint of improvement of; andm . It has more reasonable properties for low pattern
activity thane,:

+(1—a)|:m¢|n i +(l—m¢)|nl_Am¢i“. (12)
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o If the network is in a state uncorrelated with the retrieval patterngiet my, = 1, itis
im|mT+m¢:1 =0.

e We havei,,|,—01 = 0 for any fixedm,; andm with A # qa, as there is certainly no
information stored when all pattern elements have the same value.

e Form, =m, or A = a, using the approximation ef. for smalla, we get:

m¢2 I/H¢3

= 2anain2 2In2
That means if we keep the network activity fixeddaaluring the retrieval process we
can obtain a nonzero amount of information from the networlafes 0, although the
information content of a single pattern vanishes. This result is in accordance with former
studies in equilibrium (see e.qg. [7, 8]).

(—amyIna) —

for a—>0, m «K1-2a. (13)

The rederivation of. andi,, in the limita — 0 shows that the enhanced propertiesifes 0

are only given during the retrieval process if we have- a. Further studies showed that this
fixed relation betweem, andm, is not optimal for maximizing the storage capacity. The
optimal relation can be found, but the resulting capacity is of the same order, as the maximum
according to Gardner is already reached.

2.2. Involving the threshold

Now we look at the two conditions (8) separately. After inserting +/a A from (4) we can
solve foray resp.a, whereAmy = 0 resp.Am = 0:

_ (uy — 07 _©Q-m)?

O(¢ = C%A Ol¢ = CiA (14)

Because the conditions were squared only one branch of the parabolas and o (Q)
imposes a condition oa, depending on the values of, andm . Form, > 0.5 we have
¢4 > 0 and the condition for improvementaf, (8) gives an upper bound en Form, < 0.5
the sign ofc, is changed and therefore we have a lower bound @r improvement ofn:

o< ay for O < uy

my >05= w=0 for 0> s
05 = o>y for Q> uy
My =% >0 for O < pus.

Form, = 0.5 the parabola reduces to a vertical lingZat= 1.+ and we have improvement if
Q0 < u4 for unlimited pattern loading and no improvement @r> ,. The conditions for
improvement ofz |, can be obtained in the same way.

For good retrieval qualities we would like to have improvement of both overlaps, which
is ensured in a region of théQ, o)-plane limited by the valid branches ofy and «,
(see figure 1). Hence we have a lower and upper bound for the region of the threshold,
0 €[y *+cyo, uy — cpo], that will lead to improvements om, andm depending on.
Unlessmy = m;, = 0.5 there is always an intersection of the valid branches,ofinde |,
where both improvements are equal to zero. Here the interval f@duces to a single point
and we haver, =« = a.. The value ofQ at this point is

QC:(CTCIC¢—Q>(MT+mL—1) for mT+m¢;é1

cy —c2/2
——e 9 for my+m; =1 16
@ 1 J ( )
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1.2+ oy ay "
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1
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0.6 branch
ncj:-ot
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m(t+1) > m(t) /
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/
‘ ‘ ‘ ‘ / C
0.1 0.2 0.3 0.4 .5

Figure 1. a4 (Q) anda (Q) for my = 0.6, A = a = 0.1 andT = 0. The region of simultaneous

improvement is shaded.

The dependence anis linear and form, = m| = 1 it reduces toQ. = 0.5 — a which
is known to be the optimal threshold near retrieval [1,7]. mgr+ m, > 1 the region of
simultaneous improvement is bounded below and above and the maximal possible storage is
a.. Formy +m < 1the region is only bounded below andis the minimal possible pattern
loading for improvement, in accordance with (10). In figure 2 our considerations are confirmed
by simulations fow = 0.3,my =m | = 0.9 andm, = 0.3,m, = 0.9.

Toillustrate the use of the derived restrictions intlke «)-plane we discuss some choices
of thresholds as functions of the state of the network which en@lye,, = Q., i.e. they

allow for the critical storage capacity. (see figure 3).

o Critical threshold
Of course, the easiest way is to cho@®e= Q. which certainly meets the requirement.

Butif m4 resp.m; < 0.5 it does not improve ifr < o, (seem in figure 2). This choice
of Q maximizes the termhc; + Ac;,.

MaximizingAmy + Am,,

Just for comparison we will also look @ = Q,, = %(MT + ) which maximizes
Amy + Am . This seems to be a somehow ‘natural’ choice, but it only fullsy—., =

Q. whenm; = m , where we haved,, = Q..

EnsuringA(r+1) =a

Another possibility is to choos@ = Q, in order to get the network activity (s + 1) = «a,
ensuring an enhanced storage capacity for smalln the retrieval state we also have
A = a, so we can reach it with this threshold dependence. However, the condition

Qula=q, = O, is only obeyed folA(t) = a.

Preservingn,/m,

We can also choosg = Q, to preserve theratiay (r+1)/m (t+1) = m4(2)/m (t) = .
We only look at this choice because it ensu@&s.—.. = Q., but if we start out with a

ratio considerably different from 1 the attractor reached with this threshold will not be
very close to the retrieval state. So the only case where this is really interesting is for

r = 1 where we hav®, = Q. = 0,,.
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Ar, O

LA 1L, Q
-0.2 0.2 0.4

Figure 2. Simulations forx4 (Q) anda (Q) witha = 0.3,7 = 0 andm, = m| = 0.9 ——(data
filled), my = 0.3, m; = 0.9 — ——(data unfilled). Data obtained with= 600 and averaged over
10 networks, each with at least 150 stimuli. The average improvement ahdm | was recorded
as a function ot for different values ofD. At o = ay resp.a, Amy resp.Am  vanishes.

i
I
|
—==T . , .
0.1 0.2 0.3 0.4 0.5

Figure 3. Comparison of thresholds fety = 0.6, A = a = 0.1 andT = 0. Threshold choices:
Qc ST T Qm - T Qa ___rQr - - -

In figure 3 we illustrate the four choices in th@, «)-plane witha = 0.1, m; = 0.6
andm, = m,, = 0.956. Therefore we hav@,|,—., = Q. and the curve oD,, does not
cross the critical pointQ., «.). One can compare the different choices of thresholds by the
improvementsAm, and Am , which can easily be calculated. As. = 0.6 the upper limit
for Am, is 0.4 and forAm  itis 1 —m, = 0.044. For smalk these limits are reached by
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Q.andQ,. As expected), gives the highest improvements because it has the best position
between the two parabolas in figure 3. The improvement ofesp.m is a monotonically
increasing function of the distance betwe@rand Q|,—a, resp. Qlo—q,- Q- andQ, give the
highest possible storage capacityin any case but the improvemenisn, look rather poor,
especially forQ,.

If we consider a case withu, = m the picture is symmetric with respect to the axis
0 = Q. and therefored,, = Q, = Q. give the best possible improvememtg:, = Am.
Thus, the optimal choice of the threshold during the retrieval process depends on the situation.
If one hasn4(0) ~ m | (0) anda =~ 0.5 the best choice for fast retrievalg.. But in the case
of small pattern activity this limits the storage capacity and it is better to ch@ose Q,,
independent of the initial condition.

3. Dynamics for positive temperature

With increasing temperature the critical storage capacity, as defined in section 2.1, decreases
and we takdl,. as the value of” wherea, = 0. The allowed region for the threshold reduces

to a single pointD.|r—r,, which we also calculate. After that we make an approximation for

o4 anda, for small temperatures.

3.1. Critical temperature

We look at the dynamical equation (6) in the limit— 0, where the distribution functions
resp.p, reduce to delta functions, because~ «:
1 - - + 2 oa—
prx) = ——exp x - O 05— (= 0)  py(x) resp.
In this limit we can evaluate the integrals in the evolution equation (6) and after solvigg for
and Q we get the critical temperatuf®e = B! and the corresponding threshaldl|7—r. .
FormT + m, ;ﬁ 1:

—2(my+my — 1)

“TinGE-p+ InGE — 1) (A7)
|n(m—1¢ -1
Qelr=r. = InGE —D+inGE -1 @) lmy+m, =1 (18)

Form; +m = 1:
1
t

The critical temperature is independent of the pattern activity and the network connectivity. It
is easy to see that the maximum valugjis= 0.5 atm; = m, = 0.5, and if at least one of the

two observables is equal to zero or one we hEve: 0. We se€l,.(m ) in figure 4 for several
values ofm,, confirmed by simulations which were performed at different valuesaridc

to demonstrate that it is independent of these parameters.

The critical threshold al” = T, has the same linear dependenceaoins for zero
temperature, except for an additive constant dependingoandm . Only form,, m, ~ 1
with m, # m is there a considerable difference between the two, in the casg ef m,
both are equal for every. This indicates that for increasing temperature the critical point in
the (Q, @)-plane is mainly shifted to lower with fixed Q, which is true to high accuracy, as
we see next.
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Figure 4. Critical temperatur@.(m ) formy =05- - - -,my =09---m4; =0.999 — — —.

Data withN = 2000,o: = 0.0005 andny = 0.5 (x,a = 0.3 andc = 0.5),my = 0.9 (0,a =0.3
andc = 1) andmy = 0.999 (0, « = 0.5 andc = 1).

3.2. Expansion for small temperatures

ForT > O we solve the conditions (r +1) = m(t) andm (¢ + 1) = m (¢) for oy anda by
using an approximation for low temperatures7as [0, 0.5]. In the following we look at the
first condition in order to get;, the same can be done foy. After some algebra, givenin the
appendix, we have the following approximation which is accuratd'fec 202/ (s — Q):

-0 — 0\’ n2
ma(t+ 1)~ my(t+1)|7_o — Tz% exp(— <“I/§U ) ) 71’—2 (19)

By looking at the numerical solutions af (Q) we see that the shape of the parabola is more
or less unaltered, it is just shifted down. Therefore, we make the amsatzos |r=0 — f(T)
where the functiory (T') accounts for the downshift of, as an additional source of noise, like
in [4]. Now we replacex,|r—g by a4 + f(T) in the dynamical equation for zero temperature
(7) and expand af (T') = 0 to first order:

_ _ 2
my(t+1) ~ ma(t + D)o — ;T\/Z_—TLT‘QB exp(— <“i/§JQ> ) AF(T).

This term looks very similar to the expansion of the dynamical equation and by comparing the
two we get the following approximation:

2
124°
The calculation forr, gives the same correction to this order. We labelled the approximation
with 1 because we can also think of another approximation. By assuming a quddratic

dependence of we can directly make the ansa#z = a4|r—0 — ¥27%. Knowing the
critical temperature we get the conditiof| =7, = a¢|r=0 — szCZ = 0, yielding another

ayy X aplr=o— nT? ay Raylr—o— nT? where y; = (20)
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ar, Oy

0.05 0.1 0.15 0.2

Figure 5. a4 (Q) anda (Q) formy = 0.6,A =a =03 andT =0——,T = 0.2 ——— (data
filled), T = 0.3 — — — (data unfilled). Approximations~~ (grey lines).as, ande , lower
curvesay, ande , UPpEr curves.

approximation:

opy N dplr=0 — y2T? oy, Raylr=o— yoT?

1 NG =D+InG - DP? (21)
where y, = — - - .

4A (cp *+cy)

In figure 5 both approximations are compared with the numerical solutiol fet 0.2,
0.3 and the cas’ = O for my = 0.6 anda = A = 03. Therefore we have
Y1 = 0.822% > Yy = 0.679% and the first approximation (20) gives the lower curves, the
second (21) the upper ones. As expected (21) is better for spal, was evaluated at = 0.
Fora,, anda,, to be accurate we have the condition> max(uy — Q, Q@ — u)) 5T ~ 0.1
from above, making it better for higher storage levels.

We also see that with increasing temperature the ansatz of a simple downshift of the
parabolas:; (Q) anda (Q) becomes more and more inaccurate. But evefffer 0.3, which
is relatively high, the approximations are pretty good. TherefQrdecreases proportional
to 72 for small temperatures, which is in accordance with former studies in equilibrium (see
e.g.[1]). Fromthe 1A-dependence of andy, we know that the effect of positive temperature
is much more drastic for small network activities than for large ones.

4. Conclusion

In this paper we described a randomly diluted neural network model with variable pattern

activity using a probabilistic approach to solve the one-step dynamics with one condensed
pattern. By carrying out the analysis as exactly as possible we were able to confirm with
this relatively simple approach many previous results on this model, derived with different

techniques and often restricted to special cases. Most of our results are valid for the whole
range of the different parameters, except for the dilution level, generalizing some former

studies.
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We obtained new insight in the dynamical properties of the network, studying the critical
storage capacity, information content and critical temperature for arbitrary network states.
Special focus was placed on the resulting constraints on the threshold to realize the critical
values, a feature that was often overlooked in former studies. We used this to analyse the
effects of choices of threshold functions during retrieval. We also showed that we have to
impose conditions during the retrieval process to get the enhanced properties derived in former
studies.

To demonstrate the possibilities of the probabilistic approach we chose a neural network
which is relatively simple, but has many realistic features. The analysis is not restricted to
this model, it can be used for all networks with parallel updating. Of further importance is
the neuron-independent description of the local field, in our case representgd by and
o, excluding for example neuron-dependent thresholds. But the method is easily extendable
to other models with graded response neurons (see [10]), groups of patterns with different
activities, a finite number of condensed patterns or sequential patterns (see [13]).

It may be interesting to extend the presented analysis to these cases, making it possible to
describe various network properties exactly with relatively easy computations. The restrictions
we derived on the parameters during retrieval may be especially helpful for simulations.
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Appendix. Calculation for T > 0

In section 3.2 we need to calculate ande, from the dynamical equations f@r > 0. In the
following we perform the calculation fag,, wherex| can be evaluated in exactly the same
way. First, we split the integral in the dynamical equation (6):

(% exp2Bx) o 1
mee = e || T

By using the geometric serieg@ +y) = > - ;(—1)"y" for y < 1 and replacing by —x in
the first integral we get:

oo o0
my(t+1) = Z(—l)" / [e7%*" o, (x) — e 2P0 D o (—x)] dx.
n=0 0
Insertingp, (x) from equation (5), we have to calculate two Gaussian integrals of the form

fooo e e dy = 2\/\/__ exp( i ) [1 erf <2¢_>}

After this we see that, (r + 1)|7—o is the term in the sum for = 0 and we get the expression

1 -0
my(t+1) = 2<1+erf< N> ))—A:m¢(t+l)|T=o—A

with the correction term

A= %;(—1)"82’32"2”2 [ezﬂ(“T‘Q)" (1 —erf («/Eaﬁn + MD%UQ))

2B -0 (1 —erf (ﬁaﬁ” ng>>]
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This expression is still exact but in order to perform the sum we use the approximation
1 — erf(x) = exp(—x?)/(y/mx) [14]. This is accurate fox > 1 which means in our case
B> (uy — 0)/(20%). The expression fon simplifies to

Al PO o _(m—Q)Z Sy n2_<m—Q>2 -
2 pod V2o ) )& 2802

The sum can be done exactly and we end up with the following, writing g~

2
my(t+1) =mq(t + 17— — Tz:j/z_—ij?» exp(— <%) ) r <T7r%>
Fey =27 s_inx _ n? N 7i4x2
2x2sinx 12 720
ForT 2<< 2‘72/(M — Q) the argument of" is small and we use the zero-order approximation

~ T
'~ 3.
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