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Abstract. The subject of this paper is a neural network with binary neurons, randomly diluted
synapses and variable pattern activity. We look at the system with parallel updating using a
probabilistic approach to solve the one-step dynamics with one condensed pattern. We derive
restrictions on the storage capacity and the mutual information content occuring during the retrieval
process. Special focus is placed on the constraints on the threshold for optimal performance. We
also look at the effect of noisy updating, giving a dynamical version of the critical temperature, the
corresponding threshold and an approximation for the time evolution for small temperatures. The
description is applicable to the whole retrieval process in the limit of strong dilution. The analysis
is carried out as exactly as possible and over the whole parameter ranges, generalizing some former
results.

1. Introduction

Simple cognitive functions of the brain, like associative recall of memories, have been studied
over the last 15 years by using models of attractor networks. One of these is the Hopfield–Little
model [3], which was analysed by means of statistical mechanics [4] because of the similarity
to spin models. To get a more realistical description of properties in data processing, it was
extended to models with variable pattern activity [5]. In this context a network with neurons
Si ∈ {0, 1}, instead of{−1, 1} was studied in [6, 7] and showed enhanced storage capacity,
resembling the upper bound obtained by Gardner [8]. To account for the low connectivity in the
brain, this model was extended to random dilution of synapses and analysed with a dynamical
approach [9]. The one-step parallel dynamics of a network can be solved exactly, using a
probabilistic description [10] with a restriction to the first time step or very high dilution [11],
due to feed-back loops. More recently this method was used to characterize the influence of
the threshold on the retrieval properties [12,13].

Following this work, we characterize the state of the network by two overlaps with one
condensed pattern. We use the probabilistic description of the time evolution of these overlaps
to derive conditions for their improvement on the storage capacity. We also consider the mutual
information content [12] and the restriction on the threshold in the(Q, α)-plane for optimal
performance. The effect of positive temperature is studied, leading to an exact expression for
the critical value with the corresponding threshold, and an approximation for the time evolution
for small temperatures. The analysis is performed as exactly as possible, covering the whole
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range of the pattern activity and the overlaps from a dynamical point of view. In this way we
can rederive some former results by looking at special limits, like small pattern activity and the
network near retrieval. The main purpose is to demonstrate the possibilities of this relatively
simple approach and we therefore study a simple network with realistic features. The most
important considerations are confirmed by simulations.

In the sections 1.1 and 1.2 we introduce the model and the theoretical description. In
section 2 we study restrictions on the pattern loading and the threshold for good retrieval
properties at zero temperature. The effect of noisy updating is analysed in section 3 and in
section 4 we summarize our results.

1.1. The model

The network consists ofN neuronsSi ∈ {0, 1}, i = 1, . . . , N and the state is described
by S = (S1, . . . , SN). There arep patternsξν , ν = 1, . . . , p, with elementsξνi ∈ {0, 1},
i = 1, . . . , N . They are stored by using a modified Hebb rule (see [5–7])

Jij = cij (1− δij )
Nca(1− a)

p∑
ν=1

(ξ νi − a)(ξνj − a). (1)

Theξνi are independent, identically distributed random variables (IIDRV) with the distribution
functionP(ξνi ) = aδ(ξνi − 1) + (1− a)δ(ξνi ), a ∈ [0, 1]. Therefore, the activity of every
pattern

aν := 〈ξνi 〉i =
1

N

N∑
i=1

ξνi ∈ [0, 1]

is a random variable with meana and variance1
N
a(1− a) for all patternsν ∈ {1, . . . , p}.

The cij ∈ {0, 1} are also IIDRV with the distributionP(cij ) = cδ(cij − 1) + (1− c)δ(cij ),
c ∈ [0, 1]. Hence the number of connections per neuroni over the number of neurons:

Ci/N := 〈cij 〉j =
1

N

N∑
j=1

cij ∈ [0, 1]

is again a random variable with meanc and variance1
N
c(1−c) for all neuronsi ∈ {1, . . . , N}.

The normalization factor(ca(1− a))−1 in the definition of the synapses turns out to be
useful for keeping the local field in the same order of magnitude over the whole range of pattern
activity and network connectivity. As usual we haveJii = 0 for all i ∈ {1, . . . , N}, enforced
by the factor(1− δij ).

The neurons are updated parallel in discrete time stepst ∈ N and a uniform thresholdQ,
which may be time dependent, is subtracted from the local field

hi(t) :=
N∑
j=1

JijSj (t).

We have the usual activation functiong(x, β) = (1 + e−2βx)−1, with the noise parameter
β = T −1 and temperatureT , giving the update rule

P(Si(t + 1) = 1) = g(hi(t)−Q,β)
P (Si(t + 1) = 0) = 1− g(hi(t)−Q,β).

(2)

For the noiseless case the activation function reduces to the Heavyside step function,g(x, β)→
2(x) for β →∞, and the update rule is

Si(t + 1) =
{

1 if hi(t)−Q > 0

0 if hi(t)−Q < 0.
(3)
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1.2. Theoretical description

We describe the network theoretically in the thermodynamic limitN,p→∞,α = p/(cN) =
const., denoted with Lim, yielding the following simplifications:

Lim aν = a ν = 1, . . . , p Lim Ci/N = c i = 1, . . . , N.

We only consider the case of one condensed patternµ ∈ {1, · · · , p} and characterize the state
of the network by two corresponding overlaps (omitting the indexµ):

m↑(t) := 1

a
Lim〈ξµi Si(t)〉i ∈ [0, 1]

m↓(t) := 1

1− aLim〈(1− ξµi )(1− Si(t))〉i ∈ [0, 1].

With the two observables one can easily obtain the current network activityA(t):

A(t) := Lim〈Si(t)〉i = a m↑(t) + (1− a)(1−m↓(t)) ∈ [0, 1].

The average overlaps with a noncondensed patternν 6= µ arem↑ν(t) = A(t) andm↓ν(t) =
1 − A(t). As patternµ is condensed,m↑ resp. m↓ have to be substantially bigger than
these values and the casem↑ = A, m↓ = 1− A, which is equivalent withm↑ + m↓ = 1,
corresponds to the failure of retrieval. If the system is in a state withm↑(t) +m↓(t) = 1 we
havem↑(t + 1) + m↓(t + 1) = 1, which can easily be seen from the evolution equation (6)
derived later. Hence, if the network is in a state uncorrelated with the retrieval pattern it will
stay in such a state.

We often consider the network in a state whereA(t) = a. Givenm↑ this is achieved by
setting

m↓(t) = m↓A(t) := 1− a

(1− a)(1−m↑(t)).

To model the time evolution of the network we calculate the mean and the variance of the local
field hi(t) for ξµi = 0 andξµi = 1, by splitting it in signal parthSi and noise parthNi as usual:

hi = Lim

〈
cij (1− δij )
Nca(1− a)(ξ

µ

i − a)(ξµj − a)Sj
〉
j

→ hSi

+ Lim

〈〈
cij (1− δij )
Nca(1− a)(ξ

ν
i − a)(ξνj − a)Sj

〉〉
j,ν 6=µ

→ hNi .

The indication of the time dependence is omitted. We now average over the random
distributions of the patternsξν and the state of the networkS in the thermodynamic limit,
fixing the value ofξµi . Due to self-averaging the signal part has a concrete value,µ↑ resp.µ↓,
but the noise part is a Gaussian random variable with mean zero and varianceσ 2:

µ↑ = Lim〈〈hi |ξµi = 1〉〉ξµj ,j 6=i,S = (1− a)(m↑ +m↓ − 1)

µ↓ = Lim〈〈hi |ξµi = 0〉〉ξµj ,j 6=i,S = −a(m↑ +m↓ − 1)

σ 2 = Lim〈〈hNi
2〉〉ξν ,ν 6=µ,S = αA.

(4)

The two random variableshi |ξµi =0,1−Q have meanµ↓ −Q resp.µ↑ −Q, standard deviation
σ and the distribution functions

ρ↑(x) = 1

σ
√

2π
exp

(−(x − µ↑ +Q)2

2σ 2

)
ρ↓(x) resp. i = 1, . . . , N. (5)
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With the dynamical equations (2), (3) we can computem↑ andm↓ for the next time step by
averaging the activation function over the distribution of thehi −Q.

m↑(t + 1) = 〈g(hi(t)−Q,β)〉ρ↑ =
∫ ∞
−∞

g(x, β)ρ↑(x) dx

m↓(t + 1) = 〈1− g(hi(t)−Q,β)〉ρ↓ =
∫ ∞
−∞
(1− g(x, β))ρ↓(x) dx.

(6)

For the noiseless case this simplifies to

m↑(t + 1) =
∫ ∞

0
ρ↑(x) dx = 1

2

(
1 + erf

(
µ↑ −Q√

2σ

))
m↓(t + 1) = 1

2

(
1 + erf

(
Q− µ↓√

2σ

))
.

(7)

In the calculations above we considered the neurons to be IIDRVs with activityA. This
can be realized in the first time step but after one iteration the neurons may be correlated due
to feedback loops. In the limit of strong dilution, so that the neurons do not have common
ancestors in former time steps, the description is valid for the whole retrieval process. To
achieve this the number of connections at each neuronCi has to be of order lnN , which
includesc ∼ N−1 lnN → 0 for N → ∞. For further details see [10, 11] and references
therein.

There are 1/(aN) corrections toσ andµ↑ which become relevant in finite systems with
small a. Therefore we will only present simulations for relativly higha, which is not a
limitation of the theory.

2. Dynamical properties at zero temperature

In the following we look at the one-step dynamics and get conditions on the pattern loading and
the threshold for improvement ofm↑ andm↓ atT = 0. We set1m↑ = m↑(t +1)−m↑(t) > 0
and1m↓ > 0 in equation (7) and get (inverf(x) is the inverse errorfunction erf(−1)(x)):

µ↑ −Q
σ

> c↑ :=
√

2 inverf(2m↑ − 1)

Q− µ↓
σ

> c↓ :=
√

2 inverf(2m↓ − 1).
(8)

2.1. Critical storage capacity and mutual information

By adding the two equations (8) we get the conditionµ↑ −µ↓ > σ(c↑ + c↓) for improvement,
which has to be satisfied independent of the choice ofQ, assuming that it is chosen optimally.
With the expressions forµ↑,µ↓ andσ from equation (4) we can solve for the critical valueαc
where both improvements are zero:

αc = (m↑ +m↓ − 1)2

(c↑ + c↓)2A
for m↑ +m↓ 6= 1

= 1

2πm↑
e−c

2
↑/2 for m↑ +m↓ = 1. (9)

From the inequality we get the following conditions for improvement ofm↑ andm↓:

α < αc if m↑ +m↓ > 1

α > αc if m↑ +m↓ < 1.
(10)
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This is the case because we havec↑ + c↓ < 0 for m↑ + m↓ < 1 and in this region we can
have improvement for arbitrary high pattern loadings. So ifα is too high the network always
develops towards a state uncorrelated with the retrieval pattern, where we havem↑ +m↓ = 1.
In contrast to the usual storage capacity in equilibrium,αc is a dynamical variable, depending
onm↑ andm↓, as well as ona andc.

• Dependence on the network connectivity
As we definedα = p/(cN)we see that the maximal number of storable patterns decreases
proportional to the number of connections per neuron, becauseαc is independent onc.
This is in accordance with former studies of random dilution in equilibrium (e.g. [9]).
• Dependence on the pattern activity

For decreasinga the capacity increases monotonically ifm↑ +m↓ > 1 and decreases if

m↑ + m↓ < 1. If m↑ andm↓ are fixed we get the finite valueα|a=0 = (m↑+m↓−1)2

(c↑+c↓)2(1−m↓) .
When the activity of the network is equal to the one of the stored patterns we have
A = a, m↓ = m↓A and thereforec↓|m↓A =

√
2 inverf[1− 2a

1−a (1− m↑)]. By using the
approximation inverf(x) ≈ (− ln (1− x))1/2 for small x (see [14]), we get the leading
behaviour ofαc for the limit a→ 0:

αc ≈
(m↑ +m↓A − 1)2

(c↓|m↓A)2a
≈ m↑2c

−2a ln a
with m↑ � 1− 2a. (11)

This is known from former studies [5–7,9] as an approximation to the equilibrium storage
capacity for smalla and resembles the upper bound by Gardner [8].
• Dependence on the state of the network

If one of the two parameters,m↑ andm↓, is equal to 1 or 0,αc is zero, because for
m↑, m↓ → 1 we havec↑, c↓ → ∞. This means we can only have perfect retrieval for a
finite number of patterns.

For very small pattern activities the storage capacity may increase but the number of active
neurons and the information represented by a single pattern decreases. Therefore, the maximal
amount of information storable in the network gives a more sensible characterization of
performance. To account for the loss of information due to retrieval errors, i.e.m↑, m↓ 6= 1,
one uses the mutual information [12]. It can be defined as the negative logarithm of the
conditional probability of choosing a network state withm↑ andm↓, given the activityA:

Lim
Im

N
= −Lim

1

N
ln

[(
aN

m↑aN

)(
(1− a)N

(1−m↓)(1− a)N
)/(

N

AN

)]
= a(m↑ lnm↑ + (1−m↑) ln(1−m↑))− (1− A) ln(1− A)
− A lnA + (1− a)(m↓ lnm↓ + (1−m↓) ln(1−m↓)).

This is the average amount of information per neuron of the retrieval pattern, that can be
obtained from the network in a given statem↑, m↓. For the maximal mutual information
contentim per synapse in units of bits we get:

im = Lim Im
pmax

cN2 ln 2
= αc

c ln 2

{
a

[
m↑ ln

m↑
A

+ (1−m↑) ln
1−m↑
1− A

]
+ (1− a)

[
m↓ ln

m↓
1− A + (1−m↓) ln

1−m↓
A

]}
. (12)

This gives the maximal amount of information per synapse storable in the network, subject to
the constraint of improvement ofm↑ andm↓. It has more reasonable properties for low pattern
activity thanαc:
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• If the network is in a state uncorrelated with the retrieval pattern, i.e.m↑ +m↓ = 1, it is
im|m↑+m↓=1 = 0.
• We haveim|a=0,1 = 0 for any fixedm↑ andm↓ with A 6= a, as there is certainly no

information stored when all pattern elements have the same value.
• Form↓ = m↓A orA = a, using the approximation ofαc for smalla, we get:

im ≈ m↑2

−2a ln a ln 2
(−am↑ ln a) −→ m↑3

2 ln 2
for a→ 0, m↑ � 1− 2a. (13)

That means if we keep the network activity fixed toa during the retrieval process we
can obtain a nonzero amount of information from the network fora → 0, although the
information content of a single pattern vanishes. This result is in accordance with former
studies in equilibrium (see e.g. [7,8]).

The rederivation ofαc andim in the limit a→ 0 shows that the enhanced properties fora→ 0
are only given during the retrieval process if we haveA = a. Further studies showed that this
fixed relation betweenm↑ andm↓ is not optimal for maximizing the storage capacity. The
optimal relation can be found, but the resulting capacity is of the same order, as the maximum
according to Gardner is already reached.

2.2. Involving the threshold

Now we look at the two conditions (8) separately. After insertingσ = √αA from (4) we can
solve forα↑ resp.α↓ where1m↑ = 0 resp.1m↓ = 0:

α↑ = (µ↑ −Q)2
c2
↑A

α↓ = (Q− µ↓)2
c2
↓A

. (14)

Because the conditions were squared only one branch of the parabolasα↑(Q) andα↓(Q)
imposes a condition onα, depending on the values ofm↑ andm↓. Form↑ > 0.5 we have
c↑ > 0 and the condition for improvement ofm↑ (8) gives an upper bound onα. Form↑ < 0.5
the sign ofc↑ is changed and therefore we have a lower bound onα for improvement ofm↑:

m↑ > 0.5⇒ α < α↑ for Q < µ↑
α = 0 for Q > µ↑

m↑ < 0.5⇒ α > α↑ for Q > µ↑
α > 0 for Q 6 µ↑.

(15)

Form↑ = 0.5 the parabola reduces to a vertical line atQ = µ↑ and we have improvement if
Q < µ↑ for unlimited pattern loading and no improvement forQ > µ↑. The conditions for
improvement ofm↓ can be obtained in the same way.

For good retrieval qualities we would like to have improvement of both overlaps, which
is ensured in a region of the(Q, α)-plane limited by the valid branches ofα↑ and α↓
(see figure 1). Hence we have a lower and upper bound for the region of the threshold,
Q ∈ [µ↓ + c↓σ,µ↑ − c↑σ ] , that will lead to improvements onm↑ andm↓ depending onα.
Unlessm↑ = m↓ = 0.5 there is always an intersection of the valid branches ofα↑ andα↓,
where both improvements are equal to zero. Here the interval forQ reduces to a single point
and we haveα↑ = α↓ = αc. The value ofQ at this point is

Qc =
(

c↓
c↑ + c↓

− a
)
(m↑ +m↓ − 1) for m↑ +m↓ 6= 1

= c↓√
2π

e−c
2
↓/2 for m↑ +m↓ = 1. (16)
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Q

m t 1 m t

m t 1 m t

Qc

Q

Figure 1. α↑(Q) andα↓(Q) for m↑ = 0.6,A = a = 0.1 andT = 0. The region of simultaneous
improvement is shaded.

The dependence ona is linear and form↑ = m↓ = 1 it reduces toQc = 0.5 − a which
is known to be the optimal threshold near retrieval [1, 7]. Form↑ + m↓ > 1 the region of
simultaneous improvement is bounded below and above and the maximal possible storage is
αc. Form↑ +m↓ < 1 the region is only bounded below andαc is the minimal possible pattern
loading for improvement, in accordance with (10). In figure 2 our considerations are confirmed
by simulations fora = 0.3,m↑ = m↓ = 0.9 andm↑ = 0.3,m↓ = 0.9.

To illustrate the use of the derived restrictions in the(Q, α)-plane we discuss some choices
of thresholds as functions of the state of the network which ensureQ|α=αc = Qc, i.e. they
allow for the critical storage capacityαc (see figure 3).

• Critical threshold
Of course, the easiest way is to chooseQ = Qc which certainly meets the requirement.
But if m↑ resp.m↓ < 0.5 it does not improve ifα < αc (seem↑ in figure 2). This choice
of Q maximizes the term1c↑ +1c↓.
• Maximizing1m↑ +1m↓

Just for comparison we will also look atQ = Qm := 1
2(µ↑ + µ↓) which maximizes

1m↑ +1m↓. This seems to be a somehow ‘natural’ choice, but it only fulfilsQm|α=αc =
Qc whenm↑ = m↓, where we haveQm = Qc.
• EnsuringA(t + 1) = a

Another possibility is to chooseQ = Qa in order to get the network activityA(t +1) = a,
ensuring an enhanced storage capacity for smalla. In the retrieval state we also have
A = a, so we can reach it with this threshold dependence. However, the condition
Qa|α=αc = Qc is only obeyed forA(t) = a.
• Preservingm↑/m↓

We can also chooseQ = Qr to preserve the ratiom↑(t+1)/m↓(t+1) = m↑(t)/m↓(t) = r.
We only look at this choice because it ensuresQr |α=αc = Qc, but if we start out with a
ratio considerably different from 1 the attractor reached with this threshold will not be
very close to the retrieval state. So the only case where this is really interesting is for
r = 1 where we haveQr = Qc = Qm.
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Figure 2. Simulations forα↑(Q) andα↓(Q) with a = 0.3,T = 0 andm↑ = m↓ = 0.9 ——(data
filled),m↑ = 0.3, m↓ = 0.9 – – –(data unfilled). Data obtained withN = 600 and averaged over
10 networks, each with at least 150 stimuli. The average improvement ofm↑ andm↓ was recorded
as a function ofα for different values ofQ. At α = α↑ resp.α↓,1m↑ resp.1m↓ vanishes.

Figure 3. Comparison of thresholds form↑ = 0.6,A = a = 0.1 andT = 0. Threshold choices:
Qc - - - -,Qm — ·—,Qa – – –,Qr — — —.

In figure 3 we illustrate the four choices in the(Q, α)-plane witha = 0.1, m↑ = 0.6
andm↓ = m↓A = 0.956. Therefore we haveQa|α=αc = Qc and the curve ofQm does not
cross the critical point(Qc, αc). One can compare the different choices of thresholds by the
improvements1m↑ and1m↓, which can easily be calculated. Asm↑ = 0.6 the upper limit
for 1m↑ is 0.4 and for1m↓ it is 1− m↓A = 0.044. For smallα these limits are reached by
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Qc andQa. As expectedQa gives the highest improvements because it has the best position
between the two parabolas in figure 3. The improvement ofm↑ resp.m↓ is a monotonically
increasing function of the distance betweenQ andQ|α=α↑ resp.Q|α=α↓ . Qc andQr give the
highest possible storage capacityαc in any case but the improvements1m↑ look rather poor,
especially forQr .

If we consider a case withm↑ = m↓ the picture is symmetric with respect to the axis
Q = Qc and thereforeQm = Qr = Qc give the best possible improvements1m↑ = 1m↓.
Thus, the optimal choice of the threshold during the retrieval process depends on the situation.
If one hasm↑(0) ≈ m↓(0) anda ≈ 0.5 the best choice for fast retrieval isQc. But in the case
of small pattern activity this limits the storage capacity and it is better to chooseQ = Qa,
independent of the initial condition.

3. Dynamics for positive temperature

With increasing temperature the critical storage capacity, as defined in section 2.1, decreases
and we takeTc as the value ofT whereαc = 0. The allowed region for the threshold reduces
to a single pointQc|T=Tc , which we also calculate. After that we make an approximation for
α↑ andα↓ for small temperatures.

3.1. Critical temperature

We look at the dynamical equation (6) in the limitα→ 0, where the distribution functionsρ↑
resp.ρ↓ reduce to delta functions, becauseσ 2 ∼ α:

ρ↑(x) = 1

σ
√

2π
exp
−(x − µ↑ +Q)2

2σ 2

α→0−→ δ(x − (µ↑ −Q)) ρ↓(x) resp.

In this limit we can evaluate the integrals in the evolution equation (6) and after solving forβ

andQ we get the critical temperatureTc = β−1
c and the corresponding thresholdQc|T=Tc .

Form↑ +m↓ 6= 1:

Tc = −2(m↑ +m↓ − 1)

ln( 1
m↓
− 1) + ln( 1

m↑
− 1)

(17)

Qc|T=Tc =
(

ln( 1
m↓
− 1)

ln( 1
m↓
− 1) + ln( 1

m↑
− 1)

− a
)
(m↑ +m↓ − 1). (18)

Form↑ +m↓ = 1:

Tc = 2m↑(1−m↑) Qc|T=Tc = m↑(1−m↑) ln

(
1

m↑
− 1

)
.

The critical temperature is independent of the pattern activity and the network connectivity. It
is easy to see that the maximum value isTc = 0.5 atm↑ = m↓ = 0.5, and if at least one of the
two observables is equal to zero or one we haveTc = 0. We seeTc(m↓) in figure 4 for several
values ofm↑, confirmed by simulations which were performed at different values ofa andc
to demonstrate that it is independent of these parameters.

The critical threshold atT = Tc has the same linear dependence ona as for zero
temperature, except for an additive constant depending onm↑ andm↓. Only form↑, m↓ ≈ 1
with m↑ 6= m↓ is there a considerable difference between the two, in the case ofm↑ = m↓
both are equal for everya. This indicates that for increasing temperature the critical point in
the(Q, α)-plane is mainly shifted to lowerα with fixedQ, which is true to high accuracy, as
we see next.
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Figure 4. Critical temperatureTc(m↓) form↑ = 0.5 - - - -,m↑ = 0.9 – – –,m↑ = 0.999 — — —.
Data withN = 2000,α = 0.0005 andm↑ = 0.5 (?, a = 0.3 andc = 0.5),m↑ = 0.9 (♦, a = 0.3
andc = 1) andm↑ = 0.999 (�, a = 0.5 andc = 1).

3.2. Expansion for small temperatures

ForT > 0 we solve the conditionsm↑(t +1) = m↑(t) andm↓(t +1) = m↓(t) for α↑ andα↓ by
using an approximation for low temperatures, asTc ∈ [0, 0.5]. In the following we look at the
first condition in order to getα↑, the same can be done forα↓. After some algebra, given in the
appendix, we have the following approximation which is accurate forT � 2σ 2/(µ↑ −Q):

m↑(t + 1) ≈ m↑(t + 1)|T=0 − T 2 µ↑ −Q
2
√

2πσ 3
exp

(
−
(
µ↑ −Q√

2σ

)2
)
π2

12
. (19)

By looking at the numerical solutions ofα↑(Q) we see that the shape of the parabola is more
or less unaltered, it is just shifted down. Therefore, we make the ansatzα↑ = α↑|T=0− f (T )
where the functionf (T ) accounts for the downshift ofα↑ as an additional source of noise, like
in [4]. Now we replaceα↑|T=0 by α↑ + f (T ) in the dynamical equation for zero temperature
(7) and expand atf (T ) = 0 to first order:

m↑(t + 1) ≈ m↑(t + 1)|T=0 − µ↑ −Q
2
√

2πσ 3
exp

(
−
(
µ↑ −Q√

2σ

)2
)
Af (T ).

This term looks very similar to the expansion of the dynamical equation and by comparing the
two we get the following approximation:

α↑1 ≈ α↑|T=0 − γ1T
2 α↓1 ≈ α↓|T=0 − γ1T

2 where γ1 = π2

12A
. (20)

The calculation forα↓ gives the same correction to this order. We labelled the approximation
with 1 because we can also think of another approximation. By assuming a quadraticT -
dependence off we can directly make the ansatzα↑ = α↑|T=0 − γ2T

2. Knowing the
critical temperature we get the conditionαc|T=Tc = αc|T=0 − γ2T

2
C = 0, yielding another
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Figure 5. α↑(Q) andα↓(Q) for m↑ = 0.6,A = a = 0.3 andT = 0 ——, T = 0.2 – – – (data
filled), T = 0.3 — — — (data unfilled). Approximations∼∼∼ (grey lines):α↑1 andα↓1 lower
curves,α↑2 andα↓2 upper curves.

approximation:

α↑2 ≈ α↑|T=0 − γ2T
2 α↓2 ≈ α↓|T=0 − γ2T

2

where γ2 = 1

4A

[ln ( 1
m↑
− 1) + ln ( 1

m↓
− 1)]2

(c↑ + c↓)2
.

(21)

In figure 5 both approximations are compared with the numerical solution forT = 0.2,
0.3 and the caseT = 0 for m↑ = 0.6 and a = A = 0.3. Therefore we have
γ1 = 0.8221

A
> γ2 = 0.6791

A
and the first approximation (20) gives the lower curves, the

second (21) the upper ones. As expected (21) is better for smallα, asTc was evaluated atα = 0.
Forα↑1 andα↓1 to be accurate we have the conditionα � max(µ↑ −Q,Q−µ↓) 1

2AT ≈ 0.1
from above, making it better for higher storage levels.

We also see that with increasing temperature the ansatz of a simple downshift of the
parabolasα↑(Q) andα↓(Q) becomes more and more inaccurate. But even forT = 0.3, which
is relatively high, the approximations are pretty good. Thereforeαc decreases proportional
to T 2 for small temperatures, which is in accordance with former studies in equilibrium (see
e.g. [1]). From the 1/A-dependence ofγ1 andγ2 we know that the effect of positive temperature
is much more drastic for small network activities than for large ones.

4. Conclusion

In this paper we described a randomly diluted neural network model with variable pattern
activity using a probabilistic approach to solve the one-step dynamics with one condensed
pattern. By carrying out the analysis as exactly as possible we were able to confirm with
this relatively simple approach many previous results on this model, derived with different
techniques and often restricted to special cases. Most of our results are valid for the whole
range of the different parameters, except for the dilution level, generalizing some former
studies.
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We obtained new insight in the dynamical properties of the network, studying the critical
storage capacity, information content and critical temperature for arbitrary network states.
Special focus was placed on the resulting constraints on the threshold to realize the critical
values, a feature that was often overlooked in former studies. We used this to analyse the
effects of choices of threshold functions during retrieval. We also showed that we have to
impose conditions during the retrieval process to get the enhanced properties derived in former
studies.

To demonstrate the possibilities of the probabilistic approach we chose a neural network
which is relatively simple, but has many realistic features. The analysis is not restricted to
this model, it can be used for all networks with parallel updating. Of further importance is
the neuron-independent description of the local field, in our case represented byµ↑, µ↓ and
σ , excluding for example neuron-dependent thresholds. But the method is easily extendable
to other models with graded response neurons (see [10]), groups of patterns with different
activities, a finite number of condensed patterns or sequential patterns (see [13]).

It may be interesting to extend the presented analysis to these cases, making it possible to
describe various network properties exactly with relatively easy computations. The restrictions
we derived on the parameters during retrieval may be especially helpful for simulations.
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Appendix. Calculation for T > 0

In section 3.2 we need to calculateα↑ andα↓ from the dynamical equations forT > 0. In the
following we perform the calculation forα↑, whereα↓ can be evaluated in exactly the same
way. First, we split the integral in the dynamical equation (6):

m↑(t + 1) =
∫ 0

−∞

exp(2βx)

1 + exp(2βx)
ρ↑(x) dx +

∫ ∞
0

1

1 + exp(−2βx)
ρ↑(x) dx.

By using the geometric series 1/(1 +y) =∑∞n=0(−1)nyn for y < 1 and replacingx by−x in
the first integral we get:

m↑(t + 1) =
∞∑
n=0

(−1)n
∫ ∞

0
[e−2βxnρ↑(x)− e−2βx(n+1)ρ↑(−x)] dx.

Insertingρ↑(x) from equation (5), we have to calculate two Gaussian integrals of the form∫ ∞
0

e−q1x−q2x
2
dx =

√
π

2
√
q2

exp

(
q2

1

4q2

)[
1− erf

(
q1

2
√
q2

)]
.

After this we see thatm↑(t + 1)|T=0 is the term in the sum forn = 0 and we get the expression

m↑(t + 1) = 1

2

(
1 + erf

(
µ↑ −Q√

2σ

))
−1 = m↑(t + 1)|T=0 −1

with the correction term

1 = 1

2

∞∑
n=1

(−1)ne2β2σ 2n2

[
e2β(µ↑−Q)n

(
1− erf

(√
2σβn +

µ↑ −Q√
2σ

))
−e−2β(µ↑−Q)n

(
1− erf

(√
2σβn− µ↑ −Q√

2σ

))]
.
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This expression is still exact but in order to perform the sum we use the approximation
1− erf(x) = exp(−x2)/(

√
πx) [14]. This is accurate forx � 1 which means in our case

β � (µ↑ −Q)/(2σ 2). The expression for1 simplifies to

1 = µ↑ −Q
2
√

2πβ2σ 3
exp

(
−
(
µ↑ −Q√

2σ

)2
) ∞∑
n=1

(−1)n
(
n2 −

(
µ↑ −Q
2βσ 2

)2
)−1

.

The sum can be done exactly and we end up with the following, writingT = β−1:

m↑(t + 1) = m↑(t + 1)|T=0 − T 2 µ↑ −Q
2
√

2πσ 3
exp

(
−
(
µ↑ −Q√

2σ

)2
)
0

(
T π

µ↑ −Q
2σ 2

)
0(x) = x − sinx

2x2 sinx
= π2

12
+

7π4

720
x2 + · · · .

ForT � 2σ 2/(µ↑ −Q) the argument of0 is small and we use the zero-order approximation
0 ≈ π2

12.
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